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ABSTRACT
We describe the design and implementation of a system for
simulating the spread of disease among individuals in a large
urban population over the course of several weeks. In con-
trast to traditional approaches, we do not assume uniform
mixing among large sub-populations or split the population
into spatial or demographic subpopulations determined a
priori. Instead, we rely on empirical estimates of the social
network, or contact patterns, that are produced by TRAN-
SIMS, a large-scale simulation of transportation systems.

Categories and Subject Descriptors
I.6.5 [Computing Methodologies]: Model Development;
J.3 [Computer Applications]: Biology and Genetics

General Terms
Design, Algorithms

Keywords
Epidemiology, individual based, parallel discrete event sim-
ulation

1. INTRODUCTION
The course of an epidemic is determined largely by the

patterns of contacts among individuals. These contact pat-
terns can be represented as a time dependent weighted graph
whose vertices represent people. Two vertices are connected
by an edge if the corresponding people are in contact. The
edges can be weighted to represent factors important in the
transmission of disease, such as the duration of contact. In
this representation, spread of a disease becomes a problem
of di�usion on a time-dependent graph.
Because the graphs in question are so large (millions of

vertices and edges), any technique for analyzing an epidemic
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at the individual level will be very expensive. Compounding
the di�culty is the time-dependent nature of the graphs,
which change on a time scale of seconds or minutes, yet need
to be analyzed over a several week period. Furthermore, the
nature of the problem makes it very di�cult or unethical to
conduct experiments on real populations, especially at the
large scales we need to understand.
Hence we turn to simulation. Distributed simulation of

local interactions results in knowledge about exactly those
global properties of the graph relevant to the spread of a
speci�c disease. We can use the simulation as an exper-
imental test-bed for analyzing the e�ects of interventions
(for example, vaccination or quarantine) targeted at speci�c
geographic or demographic sub-populations.
The epidemiological simulation itself does not necessarily

provide a better understanding of the complex interactions
between disease and social network. It will not, for instance,
suggest what intervention strategies to try. It is more likely
that such understanding will come from a graph theoretical
analysis of the social network.[2] Yet even evaluating many
of the graph properties likely to be important for disease
transmission is NP-hard.[5] Analyzing the social network's
structure in enough detail to understand how it interacts
with disease is likely to be even harder. Hence one goal of
the simulation design is to develop distributed, local algo-
rithms for approximating and analyzing global properties of
large graphs, similar in spirit to those Kleinberg proposes
for analyzing the World Wide Web.[12, 11]

2. REQUIREMENTS
This simulation falls into the class of Sequential Dynami-

cal Systems (SDS).[14] An SDS has three components:

1. A dependency graph. In our case this graph is a set of
cliques, one for each location, in which any two people
who are present can interact.

2. A local mapping. The local mapping here is deter-
mined by details of the disease transmission and pro-
gression.

3. An update order. Here we choose parallel update among
all people present at a location. Fortunately, for most
diseases the time scale for transmission is short com-
pared to that for progression within a host. Thus the
dynamics of transmission and progression can be sep-
arated, resulting in fairly simple models for each.

The SDS that represents epidemiology is particularly rich:



its dependency graph is time-dependent and its local map-
ping is stochastic.
The principal requirement for the simulation is scalability

{ we intend to simulate urban regions with millions of peo-
ple over time scales of weeks. If possible, we would like to be
able to make policy decisions in real time in the face of an
outbreak. This requires sensitivity studies exploring the ef-
fects of di�erent policies with multiple (tens or hundreds) of
simulation runs. Thus, the simulation and all overhead asso-
ciated with initializing di�erent scenarios should run several
orders of magnitude faster than real time. Our target com-
puting environment is a cluster of dozens to thousands of
computing nodes.
Another important requirement is the ability to identify

speci�c geographic and demographic pathways along which
disease spreads. For example, we might �nd that downtown
fast-food establishments or 6-year-old children are on the
critical transmission path. This imposes a very disaggre-
gated level of description on the simulation. In our case, we
take this to the extreme level of individual people and their
activity locations.
The system must be modular with respect to diseases,

contact patterns, and transmission probabilities. That is, it
must be able to handle several di�erent diseases with dif-
ferent dynamics (bacterial versus viral, for example) easily.
Similarly, it should be able seamlessly to integrate several
possible sources of the underlying social networks.

3. DESIGN
The design we have chosen is a distributed discrete event

simulation. Data ow in the simulation is sketched in the
block diagram of Figure 2 and described in more detail be-
low. Each individual is represented by an object that con-
tains a subset of the available demographic information as
well as his or her state of health. Each computational node is
responsible for all the interactions at a subset of (geographi-
cal) locations. Individuals are passed among computational
nodes via messages as they go about their daily activities.

3.1 Estimating Contact Patterns
Though not strictly speaking part of the epidemiology

simulation, it is important to understand where the social
network we use comes from. One of the distinguishing fea-
tures of the current work is the level of detail it makes
available. All this detail relies on corresponding detail in
the input data. Our approach in this and other simula-
tion projects is to disaggregate to the individual level; al-
low individuals to interact using as simple as possible a
model that produces results consistent with observed results;
and re-aggregate as necessary for comparison with observa-
tions. The operations of aggregating and disaggregating do
not commute with applying local interactions. That is, the
equivalent interaction in an aggregated picture, if it exists,
would be very di�erent from that in the disaggregated pic-
ture. The whole program of \renormalization" in physics is
an attempt to understand how a local interaction changes
into an e�ective long-range interaction as the system is ag-
gregated.[8] In cases where there is no global symmetry in
the problem, it can be very di�cult to determine the equiv-
alent interaction. In these cases, disaggregate modeling is
the only feasible solution technique.
Epidemiology is only one of several large-scale simulations

currently under development that rely on detailed estimates

of the social network in a large urban area. Until recently,
it has been di�cult to obtain these estimates. Typically,
certain classes of random graphs (in recent times, especially
small-world networks) have been postulated as good repre-
sentatives. Alternatively, observations of networks in small
samples have been extrapolated to whole populations. As
the possible bene�ts to society of these various simulations
are demonstrated, they will drive development of better es-
timates of social networks.
Already, the Transportation Analysis and Simulation Sys-

tem (TRANSIMS) developed at Los Alamos National Lab-
oratory produces estimates of the social network in a large
urban area based on the assumption that the transporta-
tion infrastructure constrains people's choices about what
activities to perform and where to perform them.[1] See Fig-
ure 1. A synthetic population is endowed with demographics
matching the joint distributions given in census data. Ob-
servations are made on the daily activity patterns of several
thousand households (survey data). These patterns are used
as templates and associated with synthetic households with
similar demographics. The locations at which activities are
carried out are estimated taking into account observed land
use patterns, travel times, and dollar costs of transportation.
The estimated locations are fed into a routing algorithm to
�nd minimum cost paths through the transportation infras-
tructure consistent with constraints on mode choice. An
example constraint might be: \walk to a transit stop, take
transit to work using no more than 2 transfers and no more
than 1 bus". After routing several tens of millions of trips
in this way on a transportation network with 120,000 links,
we simulate the tra�c induced when everyone tries to ex-
ecute their plans simultaneously. The simulation resolves
tra�c down to 7.5 meters and times down to 1 second. It
provides an updated estimate of link costs, including the ef-
fects of congestion, to the Router and location estimation
algorithms, which produce new plans. This feedback pro-
cess continues iteratively until convergence to a steady state
in which no one can �nd a better path in the context of
everyone else's decisions. The resulting tra�c patterns are
matched to observed tra�c.

census
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infrastructure plans

travel times
population

simulation
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Figure 1: Data ow in the TRANSIMS simulation
system, proceeding from left to right. Input data
comes from the U.S. census and metropolitan plan-
ning organizations. We generate a synthetic popu-
lation whose demographics match the census; give
each household an appropriate set of activities; plan
routes through the network; and estimate the result-
ing travel times. The dotted lines represent feed-
back pathways, along which data ows from right to
left, in the system.

The TRANSIMS system is also an SDS at many di�erent



levels. The tra�c simulation is an obvious one, but the rela-
tion between the router and the tra�c simulation is also an
SDS. The system consists of about 200,000 lines of mostly
C++ code and runs on a variety of UNIX platforms. Pro-
duction runs for a case study in Portland, Oregon are being
made on a Linux cluster using 48 CPUs for the tra�c sim-
ulator and 64 for the router. The router takes roughly 20
hours to generate trips for the entire population; the tra�c
microsimulator runs about 3 times faster than real-time, on
average. At the current time, no information is available
regarding scalability. The current number of processors was
chosen to keep each process's memory requirement comfort-
ably below 1 Gigabyte.

3.2 Data Flow in the Epidemiological Simula-
tion

activities

population

partition

schedule

initial healthdisease
snapshot

events

summary
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Figure 2: Data ow in the epidemiology simulation
system. Input data comes from two sources: the
user's disease model and information about the so-
cial network. Stand-alone tools operate on the dis-
ease model and the population's demographics to
produce the initial state of health for everyone in the
simulation. Another tool converts a list of activities
and locations organized by person into a schedule of
events (primarily arrivals and departures) organized
by location. The �nal preparation step estimates
an optimal partition of resources among computa-
tional nodes. The simulation itself executes events
in strict time order and propagates disease in ac-
cordance with the user's disease model. It produces
three kinds of output: snapshots at speci�ed inter-
vals for animation, statistical summaries of the simu-
lation, and sets of disease-related events. In the near
future, we will add the feedback pathway shown by
the dotted line, allowing a person's state of health
to a�ect his or her activities.

Every individual's initial state of health is speci�ed be-
fore the simulation begins. Tools for easily implementing
common initializations depending on demographics are pro-
vided. For instance, vaccinating a fraction of those under
5 years old is accomplished by manipulating the parame-
ters describing their immune response. Users can, of course,
write their own tools.
Work is distributed among the computational nodes by

partitioning the set of locations statically. We create a graph
with vertices weighted by the number of visitors to a loca-
tion and edges weighted by the number of people traveling
between locations. Any standard partitioning algorithm can
be used to assign locations a partition. We currently use the
METIS library[9].
The simulation simply moves people from location to lo-

cation according to their predetermined schedules, keeping
track of their state of health as they move, and allows them
to interact.

3.3 Component Models
The form of the disease model does not a�ect the mechan-

ics of the simulation itself. Our goal, as always, is to use the
simplest model possible that can be shown to give results
consistent with observation. We are exploring two di�erent
representations for a person's state of health. The most use-
ful of these seem to be a \compartment" model (essentially
a �nite state machine) and a \load" model.
Compartment models track the evolution of a few pos-

sible states, such as \Susceptible", \Infected", or \Recov-
ered". Their names are typically acronyms derived from the
allowed states - SIR in the instance above. Our compart-
ment models are derived from traditional epidemiological
models, except that we assign states to individuals instead
of entire subpopulations, and we interpret transition rates
as probabilities for an individual in one state to move to an-
other instead of the fraction of a subpopulation that moves
to another state.
Load models provide a more detailed description of partic-

ular diseases. They represent an individual's disease state as
a oating point \load" that could be taken as, for example,
the viral concentration that would be detected in a throat
swab. The load grows or decays exponentially with time.
The model must specify several independent parameters for
each person:

� The rate at which the load will grow or decay in a
host. This will, in general, depend upon time since
infection, vaccination status, and overall state of im-
mune system.

� The rate at which the load is shed into or absorbed
from the environment. This might depend on demo-
graphic factors such as age or cultural factors such as
closeness of contact or hand-washing frequency.

� The e�ects of a given load. Some people, for example,
may exhibit symptoms at lower thresholds than others.
The thresholds might be used to project a load into a
small set of states as in the compartment models.

One advantage of the load model is that it very naturally
captures the possibility of non-human or even non-living
hosts. A conference room that has been recently visited by
many people with colds can hold a slowly-decaying load; or
an establishment that serves food can be associated with
a higher than average rat population, that in turn may
carry ea-borne disease. Of course, not all these parame-
ters (and certainly not their distributions over demograph-
ics) are available for all diseases of interest. Nonetheless,
the model is capable of simulating the disease process to
whatever degree of �delity is warranted by available data.
The design of the simulation allows multiple disease states

to be associated with each person.[13] The number used is
determined at run time. Currently, there is no interaction
among disease states, but this may be explored. It would
provide a means of modeling, for example, distinct strains
of inuenza circulating during an outbreak. Exposure to
one strain may increase or decrease susceptibility to other
strains. Even without interaction among di�erent diseases,



person location arrival time departure time
1 A 8:00 17:00
2 A 8:00 12:00
2 B 12:00 16:00
3 C 8:00 14:00
3 B 14:00 17:00

Table 1: A hypothetical set of activities for 3 people
visiting 3 locations.

this feature can simulate multiple independent epidemics si-
multaneously. Thus a single pass through the event sched-
ule, which is the time-consuming aspect of the simulation,
can generate multiple independent epidemics for statistical
analyses.

3.4 Event Scheduler

A

B

C

9:00 13:00 15:00

1 2

3

1

2

3

1

2 3

1
2

3

4

2

B

A

C

(a)

(b)

(c)

Figure 3: (a) The set of activities from Table 1
is represented here as a time-dependent bi-partite
graph. Each of the locations A, B, and C shown
as rectangles contains a subset of the people 1, 2,
and 3. These time-dependent graphs induce many
possible \collapsed" graphs. Here we illustrate two:
(b) a weighted, undirected graph in which vertices
(people) are connected with an edge if and only if
they were in contact at some point during the day.
Edges are weighted by the total duration of the con-
tacts; (c) an unweighted, undirected graph in which
vertices (locations) are connected if the sets of peo-
ple at those locations at any time during the day
have a non-empty intersection.

The sets of locations visited by every person during the
course of a day induces a time dependent social network,
or graph of contact patterns. At any instant the graph is
composed of a set of complete sub-graphs, one for each lo-
cation where people are present. For example, Figure 3(a)
shows the graphs induced by the set of activities in Table 1.
Figure 4 displays the distribution of maximum sizes of the
subgraphs corresponding to locations in Figure 3(a), but
based on a full activity set. We note that it exhibits power
law scaling with an exponent of approximately -2.6.
The novel feature of the epidemiology simulation is its

scalability: TRANSIMS provides a set of, on average, 5.5
daily activities for each of 1.6 million people distributed
across 140,000 locations. Until very recently, research in
TRANSIMS has focused on generating good estimates of
the activity patterns for one city. We are just beginning to
analyze the resulting social network. Because of the large
size and time-dependent nature of the social network, we
have concentrated on related time-independent networks, as

illustrated in Figure 3(b) and (c). The distribution of ver-
tex degrees for a graph corresponding to Figure 3(c) on the
TRANSIMS activity set is shown in Figure 5.
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Figure 4: The distribution of maximum number of
people at any location during a day.
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Figure 5: The distribution of vertex degrees in the
contact graph collapsed over a day. In other words,
the total number of people a person shares any lo-
cation with over the course of a day.

The epidemiological simulation turns an implicit descrip-
tion of a social network contained in a set of activities into
an explicit, time-dependent instantiation of the graph. The
simulation maintains a state for every location, consisting of
a list of objects representing the people present and a dis-
ease load for the location. Events such as \contaminate a
location" or \move a person from location x to y" update
the state of all a�ected locations and, if necessary, delete
and create edges in the graph.
The current implementation's locations map one-to-one

to the locations speci�ed in the input social network. De-
pending on the resolution of the model that creates the social
network, it may be desirable to disaggregate these locations.
For example, TRANSIMS places roughly four locations on



every city block. Some of these represent a collection of
o�ce buildings holding hundreds or thousands of workers.
Our simulation in e�ect treats the entire population of a lo-
cation as if it were well-mixed. An obvious enhancement to
this is to allow hierarchical mixing, with membership in the
smallest groups determined stochastically.
The events in the system are related to:

� the underlying graph, for example \individual i moves
to location x at time t"

� the disease process, for example \location y becomes
contaminated at time t"

� possible interventions, for example \individuals with
demographics D are given an anti-viral drug at time
t"

There is no dynamic scheduling of events { the time at
which each event occurs can be determined before running
the simulation. We implement the simulation as a controller
that steps through the simulation executing events. Every
event at a location or every request for output from a loca-
tion, can trigger computation to update the current state of
all individuals present at the location. There is no optimistic
evaluation of future states and thus no roll-back mechanism.
Our prototype has been developed to test the scalability of

the design. We have so far used it primarily to calculate cer-
tain global properties of the social networks in a distributed,
local fashion as described below. We typically \infect" a
large fraction of the population in most experiments. In our
prototype we have chosen to track each person, regardless of
health state, throughout the entire day. Obviously, if only
a few people are infected, it is more e�cient to track only
those people and their contacts. This approach, however,
requires global synchronization to determine whether an in-
fected person's contacts are themselves infected or can be
initialized at this location. One open question is how much
more e�cient this would be { it is directly related to the
question of how rapidly disease will spread.

4. COMPARISON TO OTHER MODELS
One very popular model in epidemiology has been the

compartmental model referred to above.[7, 15] The popu-
lation is described by the fraction fi that falls into any of
m states. Specifying transition rates Rij among the states
gives a set of rate equations { coupled ordinary di�erential
equations that determine the evolution of the system:

d~f

dt
= R~f :

This representation is well-suited to analytical techniques,
determining constraints on the rates that lead to di�erent
asymptotic states.
There are, as usual, consequences associated with �nite-

size populations, which imply discrete rather than contin-
uous evolution. These, however, pale beside the dramatic
assumption that lies at the heart of these models: uniform
mixing of the population. In our language, it is as if the
dynamics take place on a complete (fully-connected) time-
invariant graph with equal weights on each edge. The lim-
itations of this assumption are well-known. The ecological
literature in particular emphasizes the importance of spatial
structure in population dynamics.[10, 3]

Several attempts have been made to relax this assump-
tion, in two principal ways: structured population models
and spatial models. Structured population models postu-
late the existence of several disjoint subpopulations, each of
which is uniformly mixed and connected to each of the oth-
ers by a coupling constant. A typical way to classify people
into subpopulations is by age: three or four subpopulations
corresponding to pre-school, school-age, adults, and the el-
derly. There are several problems inherent in this approach:

� It still assumes uniform mixing among large groups of
people.

� It introduces parameters, the coupling between sub-
populations, whose values can only be guessed at or
�t.

� The subpopulations are univariate. There is no way
a person could be described as both a member of a
family of four and a person who takes mass transit to
work.

Spatial models break the population into spatial cells and
allow for migration between cells. They could be viewed
as a particular structured population, with couplings be-
tween subpopulations related to the amount of migration.
The spatial structures considered, however, are typically
static, regular lattices allowing migration between neighbor-
ing cells. These do not capture well the irregular, long-range,
time dependent nature of urban social networks. For exam-
ple, the distribution of numbers of edges between locations
in our social network is likely to be at least as complicated
as a power-law, whereas for a static two-dimensional grid,
every location would have exactly four edges.
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Figure 6: The distribution of ages in the population
as a whole and in the �rst 1% of the population
infected in a simulation run.

In contrast, results of an individual-based simulation could
be aggregated to derive the proper structures for these mod-
els. Coupling constants between subpopulations could be es-
timated directly from the social network. The best variables
on which to structure subpopulations should be detectable
as natural clusters in simulation results. Figure 6 compares
the distribution of ages for the entire population and the



�rst 1% to be infected in a simulation run. Information
like this could be used to de�ne appropriate subpopulation
structures. However, the problems of allowing non-disjoint
structures and of �nite-size populations are still best ad-
dressed by individual-based simulation.
There have been e�orts to create individual-based epi-

demiological simulations before, but they have generally been
limited by the lack of suitable estimates of contact patterns.
In particular, Ackerman has performed small-scale simula-
tions using observed contacts among small groups of rela-
tively isolated people { for example, residents of a nursing
home.[16] Unfortunately, it is di�cult to scale these obser-
vational data up to entire urban areas.
Another approach to the problem of estimating contact

patterns has been to use instances of particular classes of
regular or random graphs. Several classes of random graphs
have been proposed based on academic citation networks or
World Wide Web hyperlinks. Many of these networks share
important properties, such as existence of a giant compo-
nent[4] or \small-world-ness", in which a certain fraction of
edges connect vertices that would otherwise be far apart.[17]
But it is di�cult to imagine what class of random graph
would produce the distribution shown in Figure 5.

5. IMPLEMENTATION
The simulation system has been implemented in C++ us-

ing the mpich messaging library[6] and run on both a Sun
14-processor SPARCServer and a Pentium III based Linux
cluster of 16 CPUs with ethernet. METIS[9] is used to build
the partitions.
The simulation has been run on a social network produced

by TRANSIMS that describes one day (a school day) in
the life of a city of 1.6 million people with 250,000 activity
locations. This single day is repeated many times in the
current implementation. Randomization of some activities
will be introduced in the future.
To give an appreciation for the scale of this simulation,

we display the �le sizes in megabytes for this example:

� population - 75

� activities - 1024

� initial health - 25

� events - 500

� collapsed daily graph (see next section) - 12,000

All input �les are ASCII text, associated with one or more
binary index �les. Each index entry contains a �le identi-
�er and o�set together with one or two key values, such as
location id and event timestamp. The entries are sorted by
major and minor key and stored in a binary tree. Index �les
can be merged and sorted without moving the data �les to
which they point. In addition, index �les need not contain
an entry for every element of the data �le(s). This provides
a simple mechanism for distributing events to the relevant
processor. Each process holds a di�erent index, containing
only the entries relevant for that processor.
Run times are currently approximately 100 times faster

than real time with 16 CPUs. A typical run simulating 40
days takes a few hours. Since we are most interested in the
course of a single outbreak, not dynamics over many years,
this speedup is su�cient for our purposes.
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Figure 7: The number of people infected and conta-
gious as a function of time in a simulated outbreak.

Our work to date has focused on development of the sim-
ulation and not on analysis of results. However, we have
performed a simulation for a highly contagious disease with
an incubation period of about 12 days and an contagious pe-
riod of 10 days beginning about 3 days after the appearance
of symptoms. This outbreak is started by contaminating
a single location at day 0. The resulting epidemic curves
are shown in Figure 7. Note that, in this model, the \con-
tagious" cohort is a subset of the \infected" cohort, rather
than disjoint as in a compartmental model.

6. ALGORITHMIC “DISEASES"
So far, this paper has been devoted to simulating epidemi-

ology. But there is another use for this simulation, alluded
to briey above. The spread of disease occurs through lo-
cal interaction followed by di�usion of information in a lo-
cal neighborhood { a reaction-di�usion process on a time-
dependent graph. This is a model for an important class of
computation. Since we already have a exible scheme for
specifying diseases, it is an amusing challenge to see if we
can de�ne \diseases" that accomplish useful computation.
This must be distinguished from building computer viruses.
It is more a question of determining the global semantics of
distributed, local mappings.
As an example, consider the problem of collapsing the

time-dependent social network into one showing the con-
nectivity for an entire day. Speci�cally, as in Figure 3c, we
construct a graph whose vertices are individuals. There is
an edge between two vertices if the corresponding people
were ever in the same location simultaneously during the
day. Each edge is assigned a weight corresponding to the
total duration the two individuals were in contact during
the day (summing across locations).
There is a \disease" that calculates the edge weights very

naturally. Each person carries an instance of the disease
with a unique identi�er (think \genetic sequence"). Every
person becomes \infected" with the \disease" shed by every
other person with whom he or she comes into direct contact.
The load is proportional to the amount of time spent in
contact and neither grows nor decays when the contact is
broken. Each person sheds only his or her own peculiar



\disease". At the end of one day, we simply write out the
diseases and loads carried by each person to get a description
of the edges and weights in the desired graph. This is, in
fact, the algorithm used to create Figure 5.
One can easily imagine that there are \diseases" that will

calculate shortest path, reachability, diameter, and other
useful quantities in a local, distributed fashion. The local
algorithms may not be obviously related to the global re-
sults. The e�ciency of these distributed calculations is re-
lated to properties of the interaction graphs. Understanding
how actual diseases have evolved to exploit the properties of
social networks can give us insight into both the e�ciency
of evolutionary search strategies and characteristics of the
social networks to which they have adapted.
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